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Abstract—The new product development and operational mar-
keting literature grapples with incorporation of uncertainty on
the market and technological structure discovered over time. In
contrast, market and technological uncertainty is at the heart
of neo-Schumpeterian agent-based models used in evolutionary
innovation economics. We present a novel agent-based model
in which designer agents design products to cater to services
desired by user agents. In this model, designers imitate and
experiment with design policies with which they engage in con-
tests to puzzle together products. This model thus ’evolutionary
programs’ a commendable design policy for the given market and
technological structure. We experimentally vary the segmentation
of the market and the density of technological relationships ex
ante unknown to designer agents and then study the emerging
’winning’ design policies. Preliminary simulation results reveal
that there is no ’one-size-fits-all’ design policy, but that winning
design policies are tailored to the structure of market and
technology following particular rationales. Given that we present
a novel model, we critically reflect on the operationalizations and
propose further refinements.

I. INTRODUCTION

The motivation for the model presented in this paper comes
from an observation made in a project on the design of
robots. Field studies revealed that particular robots which were
successfully developed and implemented in South-Korea failed
to be adopted in Denmark and Finland (see e.g. [3]). Designing
of a robot with only one particular target group in mind may
inhibit a successful adoption by another group at a later stage.
In retrospect, the designers of these robots could have better
explored the market more extensively to design a robot which
caters to the preferences of a bigger market.

When turning to the traditional new product development and
design (NPD) literature [19], [27], it is argued that after one
has established technical opportunities, one should conduct a
proper market study to identify user needs, and then determine
which concrete product is going to be designed to target
a subset of user needs. In operational marketing literature,
mathematical solvers are used to pick the technical attributes of
products that maximize market returns, even from a segmented
market (cf. [14]). This new product development literature is
in stark contrast with the evolutionary innovation economic lit-
erature, in which it is argued that product designs are outcome
of a competitive race of autonomous firms vying for customer
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demand, whereby firms suffer both technological and market
uncertainties. The underlying assumption is that firm agents
do not know whether a particular avenue of technological
developments leads to feasible products and whether there is
demand for the product being designed. For one, users’ needs
and wants can often only be articulated or are in part even
created only whenever the technological options are presented
to them in materialized form. Moreover, firms often direct their
scarce research and development resources in technological
directions based on market feedback. The last decade, this
“evolutionary perspective’ focusing on uncertainty is permeat-
ing the new product development and design literature as well
[21]. Indeed, product development and design processes are to
be tailored to the particularities, and should be able to flexibly
respond to new market and technical insights [28].

The research question now is whether and, if so, how to tailor
the product design policy to the (uncertainty about) market
and technological structures. In this paper, we bridge the gap
between the two bodies of literature, operational marketing
research on new product design and evolutionary economic
perspective on innovation. For this we use an operational
agent-based model in which designer agents are engaged in
repeated contests in which products are designed while facing
uncertainty in technological relationships and uncertainty in
market demand. From one to the next design contest, poorly
performing agents imitate design policies of agents with
superior performance, and, as such, the agent-based model
“evolutionary programs’ superior design policies producing
technologically feasible and market viable designs. In this
conference paper, we present our novel agent-based model and
provide preliminary simulation results.

II. LITERATURE

In the mainstream extant product development and design
literature (see those reviewed in [19]), firms rationally match
product attributes to customers’ preferences for these attributes
so as to maximize profit (see e.g. [14], [15], [17], [24]). How-
ever, this requires perfect insight in customer preferences and
perfect modularity of combinations of technical characteristics,
and requires selection of service characteristics and module
recombination at the same time (see [11]). However, insights



in requirements and desires of customers is often limited (in
part due to lack of customer research or poor execution, see
[18]), and, although modularity is a desirable feature from
the perspective of combinatorial search in product design (cf.
[1], [26]), there often are many (unforeseen) technological
relationships to take into account when designing products.
New product development and design (NPD) literature is
gradually steering clear from the linear model and incorpo-
rating more evolutionary elements [21]. The NPD literature
recognizes that product development and design processes
(i) may be specific to market, firm, and technological par-
ticularities [28], (ii) need to take into account the level of
market uncertainty [2], (iii) require product (line) redefinition
whenever information on customer needs becomes available
[4], and (iv) require recurring testing of market viability [10].
The product design literature is thus developing in the direction
of evolutionary innovation economics. In evolutionary eco-
nomics, firms are engaged in a perpetual process of developing
new products to improve the competitive position vis-a-vis
competitors by, among others, increasing the attractiveness
of products for customers. A pivotal assumption, though, is
that firms experience market uncertainty (is there demand for
what is being developed?) and technological uncertainty (is
the product being developed technically feasible?). Generally,
focusing on resolving one type of uncertainty before the other
is not commendable. One may end up with a working product
for which there is ultimately no demand, or deep insight on
what is desired but which is technologically impossible to
produce. Moreover, firms suffer bounded rationality in their
product design and position decisions. Agent-based computer
models of technology competition races, often referred to as
neo-Schumpeterian models, need an operational definition of
a product (and a digital encoding thereof) as well as the pref-
erence of customers for that product. In neo-Schumpeterian
models, products commonly are encoded as points in a low-
dimensional domain of the function of customer preferences,
while innovation is commonly modeled as a path-dependent,
random movement of firms in that low-dimensional ’product
space’ (e.g. [13], [23]).

From the appearance, both the new product design and devel-
opment literature and the evolutionary innovation economic
literature face the same conundrum: it is not clear which design
policy to follow. In this paper, we use the agent-based model to
study the effects of market and technological structures on the
new product design process. Applying agent-based models to
understand product development is definitely not new (see e.g.
[12]), yet we use it to evolutionary program a periodic product
design policy itself, which is new. Hereto, we assume that each
product design has technical characteristics which provide
services (possibly) desired by the users [20], [25]. Firm
agents in our model design a product by puzzling together
a combination of platforms and components while user agents
can be asked to express the desirability of the services provided
by (the components contained in) the product. In this paper, a
product is perceived as an assembly of subassemblies, which is
represented as a hierarchical, direct graph of platforms and end

components (without loops/ recursions). This representation is
based on the tree model for products studied in earlier work
on product competition [5]-[9] and product innovation in [29],
[30]. For the latter two papers, the tree representation hinges
on the bill-of-material perspective common in operations man-
agement (see e.g. [16], [22]).

III. AGENT-BASED MODEL

Here, we introduce a simple periodic agent-based model
of a product-market in which X designers seek to design
products to be sold to a set of users .A. Unlike in the classical
marketing models, designer agents do not know the user
preferences, nor the extent of segmentation, let alone the sizes
of the various niches. Moreover, designers do not know the
structural properties of the technology underlying the product
being designed, so experiment with extensions and decide
on the next action to take on-the-go. In our model, each
designer follows its policy 7 which specifies for each of the T’
periods which action to take (notably, whether to gather market
information or alter its design). Each simulation run consists of
having X designers engage in Y rounds of Z design contests.
From one to the next design contest, poorly performing agents
imitate design policies of agents with superior performance. As
such, the agent-based model ’evolutionary programs’ superior
design policies producing technologically feasible and market
viable designs. Table I contains the notation used in this paper.
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Table I: Notation used in this paper

A. Components, technical relationships, technological struc-
ture, and product design process

The focus in this paper is on the design process constructing
a product from given ’technological pieces’. Whether or not
a technological relationship between technological pieces is



feasible is specified by the ’technological structure’. We as-
sume that the focal designer does not know this technological
structure but has all pieces at its disposal and experimentally
puzzles together a product design. We operationally define
a product design as a combination of components organized
in an hierarchical, directed graph, whereby high-level com-
ponents can contain lower-level components. Both for ease
of exposition and operational generation of structures, we
discern two types of components, namely (i) ’end components’
which cannot contain other components, and (ii) ’platform’
components which can contain both lower-level platforms and
end components. For the remainder of this paper, we refer
to ’components’ and ’platforms’. The generic technological
structure, as illustrated in Fig. 1, is defined by the number of
platform levels N, the numbers My, ..., My of platforms per
level, the number L of components, and the U relationships
that each platform has with random lower-level components/
platforms ("has place for’). In this paper, the U relationships
of each platform at level 1 < m < M are with components/
platforms at the next level m + 1, i.e. such as how Puyy, is
placed on platform Pj5, and not such as C; is connected to
Py5 in Fig. 1.
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Figure 1: Technological structure consisting of platforms and
components, the mapping of components to services, and the
mapping of services to user niches.

Designers may take one of two design actions. Firstly, *top-
down’ design by starting at a random platform with missing
’children’, i.e. with at least one free ’slot’ for components
or platforms and adding that missing child from the set of
components and platforms. Secondly, ’bottom-up’ design by
starting at a random ’orphan’ component or platform with a
missing ’parent’ (due to which this component or platform is
not yet functional) and adding that missing parent. If there are
no orphans yet, the market impression M (which is explained
later) is used to determine which component C* is started with
for bottom-up design actions.

In the model in this paper, we implement designers’ tech-
nological uncertainty in the following ways. Firstly, designers
do not know the technological structure and rather than having
an advanced algorithm to explore the technological structure,
they experimentally puzzle platforms and components together
one by one. Secondly, whenever designers pick a (top-level)
platform, they do not know which components can ultimately
be hosted, and, as such, cannot optimize their choice based
on market desirability of the services provided by these
components. So, agents suffer ’technological uncertainty’ in

that they do not know feasible extensions beforehand and do
not foresee the technological consequences nor the market
viability of choices for technological extensions. However, we
assume that designers do know which combination of end
components ultimately provides particular services, which is
also used in deciding from which end component to conduct
bottom-up research (explained in detail later).

B. Services, user preferences, market structure, and market
research process

Each product design d provides a particular set of services

S(d) which is a subset of a fixed set of services S possible.
Design d provides service S € S if d contains the set
C(S) C C of components. Which components are required
for particular services is specified by the component-to-service
mapping (see Fig. 1). In the model for this paper, each service
requires one unique component, notably C; is assigned to
service S;, and then V' — 1 general ones randomly drawn from
Ck+1,--.,CL. As such, the requirement is that L > K , i.e.
the number of components exceeds the number of services.
Each user a € A desires W services S,. The preference of
user a for design d is determined by the extent to which the
user’s service preferences S, are met by the set of services
S(d) provided. Users with the same service preferences form
‘niches’, so all users a € A; in niche ¢ have the same
service preferences S;. The market structure is operationally
defined by the number of niches .J, the sizes of the niches
|Ail,...,]As|, as well as the number W of services for each
niche and the overlap/ distribution of these services over the
various niches. The number of users A; in niche 7 is drawn
from a power law distribution (with exponent 0.7) such that
there are a relatively a few big niches and relatively many
small niches. In this paper, each niche is associated with
one unique service requirement contained in S and W — 1
random ones from the service universe S (possibly in common
with other niches). As such, there is a certain degree of
disparity between the preferences of users in different niches.
Operationally, this is implemented by having the i-th niche
uniquely requiring service S; and W — 1 randomly drawn
services from Sjyq,...,Sk. As such, the requirement is that
K > J, ie. the number of services exceeds the number of
niches.
We implement designers’ market uncertainty operationally by
initializing that they have no prior information on the number
and sizes of niches, nor the service preferences of users in each
of these niches. Market research is taken to be ’exploration’
of the market to obtain information on (the occurrence rate
of certain) user preferences. Operationally, a designer draws a
random user a not previously interviewed from the population
A to obtain the set of desired services S,. The designer then
updates its market impression M defined as:

which is a list of tuples (S;,p;) for the I readily discovered
niches (i.e. unique sets of services S;), which is so far
encounter p; times.



The estimated desirability D of design d is defined as the
number of interviewed users for which the services provided
by d would be sufficient, i.e.

D(d, M) := Z P lsicsa)- 2
(8",p)eM
The real total desirability D(d) is
D(d):= > |Allscsa- €)
=1, J

As mentioned above, in bottom-up design, the market
impression M is used to find the most desirable components
not yet incorporated in the design. To this end, the components
required for the services desired by users in niches readily
discovered receive the weight of the frequency with which
(users in) these niches have readily been encountered. As such,
we define the estimated desirability D of a component C' € C
as

D(C,M):= > pleeesn 4

(8",p)eM

with C(S’) the set of components required for the services
Sed ie.

eS)={CecS)|Ses) (5)

Upon commencing bottom-up design without existing orphans
(see Sec. III-A), the designer takes the yet unexplored com-
ponent C* with the highest desirability, i.e.

C* := argmax D(C, M), (6)

cec’

in which C’ is the set of components not yet incorporated in
the design.
Note that, in this simple version of the model, the designer
does not have the option to target specific niches and -to this
end- optimize the total estimated desirability of a single niche.
Here, the designer rather simply targets the entire market and
seeks to optimize the (estimated) desirability for the whole
market.

C. Evolutionary programming of design policy

Here, we assume that a designer follows a periodic policy
m. Bach period ¢, the policy 7 prescribes the action 7, for
the designer to take, where 7, is either market research, a
bottom-up design action, or a top-down design action. From
the perspective of a sequential design problem, the current
decisions are contingent upon future market impressions and
future design decisions. As, however, the designer at time ¢
does, evidently, not know the market impression M,/ nor the
impression of the technological structure at any ¢ > ¢ in the
future, the current design decision need not be optimal, and
an optimal policy cannot be derived.

We use an agent-based model to evolutionary program the
’optimal’ design policy. We start with a population X of
designers, each designer z € X has its particular policy .
This policy is a series of actions encoded as a string of 0’s (top-
down), 1’s (bottom-up), and/or 2’s (market research), which

is executed repeatedly if the planning horizon is longer than
the length of the string. Initially, these policies are uniform
randomly drawn. The designers are now involved in Y rounds
each consisting of Z design contests. During the series of Z
design contests, the designers follow the same design policy,
but upon engaging in a new round of contests, they (may)
change their policy. Each design contest 1 < z < Z consists
of T periods in which the designers follow their policies
to develop a product design for a particular technological
structure B,. So, for each technological structure B, each
designer x comes up with a design dp, in the last period,
which then has total desirability D(dg.).

However, rather than studying only the outcome of a single
contest, we use an evolutionary program to find a top design
policy after Y rounds of Z contests. Hereby, after each
contest, the pX designers with the lowest total desirability
Yo,z D(dp.) Cimperfectly imitate’ the design policy
of a random design of the (1 — p)X designers with the
highest total desirability of their designs. After examination
of simulation results, we picked p = 0.8 to prevent premature
convergence (high p) and poor selective power (low p). In the
imitation step, the copying designer experimentally changes
the duration of one of the design actions (here: adds or
removes one action of the same type). After Y competition
rounds, the policy yielding the highest fotal desirability D
over all contests is taken to be the winning design policy 7*.

IV. SIMULATION RESULTS

Despite the generality of the model, and the technological
structure in particular, we limit the simulation study to two
experimental variables, namely one associated with technolog-
ical uncertainty, and one associated with market uncertainty.
Firstly, the number of connections U of a parent platform with
lower-level platforms/ end components. Secondly, the number
of market niches .J. For clarity of exposition, we study 50 cases
for the 2 x 2 contingency table for the number of connections
U =1, 3 and the number of market niches J = 1, 3. Hereby,
we have |X| = 25 designers engage in Y = 50 rounds of
Z = 20 contests (i.e. 20 different technology structures). We
thus study the effects of these two experimental variables on
the evolutionary emerging ("winning’) design policy 7*.
Looking at the extensive simulation results, we see that, in
general, if the number of niches J is low, any emerging policy
starts with a short market research period. The obtained market
impression M is subsequently used to pick the most desirable
component C* to design into the product through extensive
bottom-up design activities. Given that services, here, require,
V' number of components, the designer may repeatedly de-
termine a new, most desirable component to commence new
bottom-up design activities. For U = 1, each platform hosts
only one lower-level platform or component, and both top-
down and bottom-up design will make components feasible in
the number of steps required to cross all levels (i.e. N+1, with
N the number of level). If, in addition to U = 1, the number
of niches J = 1, bottom-up search is efficient in ensuring that
the components required for the services for this one niche



U=1 U=3

J =1 | Short market research, followed by bottom-up and then top-down | Short market research, followed by almost exclusively bottom-up
design design
(2111111111 IITI1111111111111111111000000000000000000) (2111111111111 II1I11111111111111111111100000000000)

J =3 | Long market research, followed by bottom-up and then top-down | Only few cases yield successful policies. However, those feasible
design have no market research, only top-down design
(22222222222221111111111111111111111111111100000000) (00000000000000000000000000000000000000000000000000)

Table II: Winning design policy 7* for different settings for the number of market niches J and the number of platforms/ end
components U hosted by each platform. A typical example of an emerging design policy is given in brackets, with 2 = market

research, 1 bottom-up design, 0 top-down design.

become functional (i.e. are in a contiguous string to a top-level
platform). For U = 3, each platform hosts three lower-level
platforms or end components. Top-down design generally fans
out and incorporates platforms and components ultimately not
required to provide the services for the niches targeted. Clearly,
if there are multiple niches and all are targeted (e.g. in case
J = 3), many components are ultimately needed, if not for
one then for another niche, and top-down design is then much
less inefficient. Indeed, we see that in the U = 3,J = 3
case, a ’top-down-only’ approach is followed by simply not
’wasting’ periods on market research and developing a product
incorporating as many functional end components as possible
through top-down design.

Upon increasing the number of components per layer from
M1 = 4,M2 = 8,M3 = 127M4 = 16 to M1 = 6,]\/[2 =
12, M3 = 18,M, = 24 without changing the number of
components required per service, the number of uninteresting
strands to fan out into during top-down design increase. Conse-
quently, this design policy Simulation results corroborate this:
emerging design policies are (almost) devoid of 0’s (remaining
0’s, if any, are to be considered noise rather than distinct
phases). In the U = 3,J = 3 case, there are no successful
policies emerging anymore.

Focusing on this ’top-down-only’ policy, we see that first
results indicate that this policy is evolutionary unstable for
increasing complexity in the market or technology structure.
If the number of components per service changes from V' = 2
to V' = 3 (many components required), there are no suc-
cessful policies emerging for a short time horizon. Something
different holds if we change the number of services wanted
by customers from W = 2 to W = 3 (many services
required). In this case, the time period is too short for the
’top-down-only’ policy to develop all W services randomly
(and particularly for the bigger niche(s)) and, consequently,
no successful policies emerge. If either W = 2 (number of
services desired by customers) changes to W =1 or V = 2
(number of components per service) changes to V' = 1 (or
both W and V' change to 1), two different policies emerge
as successful: both the top-down-only and a policy starting
with a market research, a brief period of bottom-up research,
followed by a long period of top-down research.

V. CONCLUSION

Already from our limited study, we conclude that, in a
context with market and technological uncertainties, there
probably is no specific ’one-size-fits-all’ product design policy.

In the evolutionary program featuring repeated contests, we
see that designers whom emerge as winners have design
policies tailored to the specific segmentation of the market and
the density of technological relationships among technologies.
While certain rationales apply to the design policies, extreme
cases of the market or technological structure may call for
radical design policies, e.g. ’just top-down’. We expect that
adding more experimental variables and possibly more (re-
fined) market and technological design activities will further
enhance our insights in the rationales for design policies.

As there is no real-world counterpart for repeated design
contests, our insight that designers need to tailor their design
policies stipulates that an online design policy is needed which
adapts to (indications of) structural features of technology and
market when they become available. Consequently, any math-
ematical solver maximizing the expected returns by matching
technical attributes of products with user requirements may
underestimate the implications of technological uncertainties
encountered during design. Conversely, investing in establish-
ing technical feasibility prior to having clear indications of
market viability may be inefficient.

That all said, grosso modo, a design policy framework gener-
ally starts with market research followed by bottom-up design
steps. Although this effectively and quickly yields feasible
designs for sparse technological structures (say, U = 1), the
bottom-up design is followed by top-down design steps for
more densely connected technology structures (say, U = 3).
As a critical note, turning to top-down design steps may be said
to be caused by the fact that (the current implementation of)
bottom-up design creates various loose strands of connected
components/ platforms only linked once another top-down or
bottom-up design activities discover a platform adjacent to
both. Bottom-up design may be more efficient if it recursively
enables components/ platforms breadth-first. Top-down de-
sign, in turn, is efficient to create contiguous connections from
top-level platforms to bottom-level components for sparse
technological structures (U = 1). For densely connected
technological structures, top-down research is highly likely
to fan out in strings of connections not necessarily leading
to components required for services targeted. Moreover, these
components may still not be functional due to missing parent
platforms. Clearly, this becomes less likely if there are many
niches (say, J = 3), hence explaining the extreme ’top-down
only’ policy.

Conclusively, with the current setup for the technological and



market structure, the diversity of the market determines the
extent in which market research is conducted, which should be
followed by directed bottom-up design. By analyzing detailed
logs of the design activity output, we conclude that bottom-
up and top-down design activities and even temporal mixes
thereof are generally inadequate design policies. The bottom-
up research heuristic should go beyond seeking to establish a
contiguous connection of a component to one of the top-level
platforms to then commence at the component level again
once succeeded. This bottom-up design should be breadth-
first and recursive whenever the technological structure is
densely connected. In contrast, top-down design may be made
more efficient by depth-first rather than breadth-first. For
definitive conclusions on this, though, future work should also
incorporate depth-first and breadth-first design options.
Moreover, a shortcoming of the current operationalization of
the design process (and the criteria therein) is that there are
no criteria on the internal structure of a design’s component
graph if there are alternatives. In the current implementation,
it may, for instance, happen that there may be multiple
top-level platforms incorporated in the same design to offer
different components and thereby services to users, while these
components could well be hosted on one and the same top-
level platform. In reality, a single, integrated top-level platform
is preferred over multiple ones. Finally, an important design
activity is to redesign an existing hierarchical graph, and this
should be included in future versions of the model.
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